Rules for Differentiation

Derivative of a Constant Function

If f is the function with the constant value c, then

$$
\frac{d f}{d x}=\frac{d}{d x}(c)=0
$$

"Proof"
-If $f(x)=c$ is a function with a constant value c, then

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c-c}{h}=\frac{0}{h}=0
$$

Power Rule for Positive Integer Powers of x

If n is a positive integer, then

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Constant Multiple Rule

If u is a differentiable function of x and c is a constant, then

$$
\frac{d}{d x}(c u)=c \frac{d u}{d x}
$$

Sum and Difference Rule

If u and v are differentiable functions of x, then their sum and difference are differentiable at every point where u and v are differentiable.

$$
\frac{d}{d x}(u \pm v)=\frac{d u}{d x}+\frac{d v}{d x}
$$

Example

Find $\frac{d p}{d t}$ if $p=t^{3}+6 t^{2}-\frac{5}{3} t+16$

$$
\begin{aligned}
& \frac{d p}{d t}=\frac{d}{d t}\left(t^{3}\right)+\frac{d}{d t}\left(6 t^{2}\right)-\frac{d}{d t}\left(\frac{5}{3} t\right)+\frac{d}{d t}(16) \\
& =3 t^{2}+12 t-\frac{5}{3}+0 \\
& =3 t^{2}+12 t-\frac{5}{3}
\end{aligned}
$$

Example

Does $y=x^{4}-2 x^{2}+2$ have any horizontal tangents?

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(x^{4}-2 x^{2}+2\right)=4 x^{3}-4 x \\
& 4 x^{3}-4 x=0 \\
& 4 x\left(x^{2}-1\right)=0 \\
& x=0,1,-1 \quad \text { Graph it! }
\end{aligned}
$$

The Product Rule

-Unlike sum and difference the derivative of the product of two functions is NOT the product of the derivatives.

$$
\begin{aligned}
& \frac{d}{d x}(x \cdot x)=\frac{d}{d x}\left(x^{2}\right)=2 x \\
& {\left[\frac{d}{d x}(x)\right]\left[\frac{d}{d x}(x)\right]=1 \bullet 1=1}
\end{aligned}
$$

'NOT the same!!
-The product of two differentiable functions u and v is differentiable and

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

"The first times the derivative of the second plus the second times the derivative of the first."

$$
" f \circ g^{\prime} g \circ f^{\prime "}
$$

Example

Find $f^{\prime}(x)$ if $f(x)=\left(x^{2}+1\right)\left(x^{3}+3\right)$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x}\left[\left(x^{2}+1\right)\left(x^{3}+3\right)\right] \\
& =\left(x^{2}+1\right)\left(3 x^{2}\right)+\left(x^{3}+3\right)(2 x) \\
& =3 x^{4}+3 x^{2}+2 x^{4}+6 x \\
& =5 x^{4}+3 x^{2}+6 x
\end{aligned}
$$

Example-Numerical Values

Let $y=u v$ be the product of the functions u and v
Find $y^{\prime}(2)$ if

$$
\begin{aligned}
& \quad u(2)=3, u^{\prime}(2)=-4, v(2)=1, v^{\prime}(2)=2 \\
& y^{\prime}=(u v)^{\prime}=u v^{\prime}+v u^{\prime} \\
& y^{\prime}(2)=u(2) v^{\prime}(2)+v(2) u^{\prime}(2) \\
& =3(2)+(1)(-4) \\
& =2
\end{aligned}
$$

Quotient Rule

At a point where $v \neq 0$, the quotient $y=\frac{u}{v}$ of two different functions is differentiable, and

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
\frac{g \circ f^{\prime} f \circ g^{\prime}}{g^{2}}
\end{gathered}
$$

Example

Find y^{\prime} if $y=\frac{5 x-2}{x^{2}+1}$

$$
y^{\prime}=\frac{\left(x^{2}+1\right)(5)-(5 x-2)(2 x)}{\left(x^{2}+1\right)^{2}}
$$

$$
=\frac{5 x^{2}+5-10 x^{2}+4 x}{\left(x^{2}+1\right)^{2}}
$$

$$
=\frac{-5 x^{2}+4 x+5}{\left(x^{2}+1\right)^{2}}
$$

